
Diameters of groups generated by transposition trees

Benjamin Kraft

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA,
USA

Abstract

Let G = 〈S〉 be a group, and let Γ be its Cayley graph. Computing the
diameter of Γ is a computationally hard problem which comes up in several
contexts. Thus, it is useful to be able to compute bounds on the diameter
of Cayley graphs. In [1] Ganesan studied the case where S is a minimal set
of transpositions which generate G, and provided an algorithm to find an
upper bound on diam Γ without examining each permutation. Expanding on
this work, we give several new algorithms to compute upper bounds on the
diameter of Γ, without examining individual elements of G. In particular,
we give one algorithm which is much faster to compute than Ganesan’s, and
one which produces better bounds than previous algorithms.

Keywords: group diameter, symmetric group, transposition tree

1. Introduction

Computing diameters of Cayley graphs is a well-known problem in finite
group theory. Given a group G generated by some set S with S = S−1, let Γ
be the Cayley graph of G with respect to S, so that the vertices of Γ are the
elements of G, and the edges of Γ are undirected edges between g and gs for
any s ∈ S and g ∈ G. The diameter of G (written diamG or diam Γ) is the
maximum distance between two vertices of Γ, or, equivalently, the smallest

Email address: benkraft@mit.edu (Benjamin Kraft)

Preprint submitted to Elsevier January 6, 2013

number d such that any element of G can be written as a product of d
elements of S. Certain cases of the problem of finding or bounding diameters
of groups were studied by Babai and Hetyei [2], Babai and Seress [3, 4],
Helfgott and Seress [5], and Bamberg et al. [6].

A well-publicized example of the diameter of a Cayley graph was the an-
nouncement in 2010 that any Rubik’s Cube can be solved in 20 moves [7].
The result took sophisticated algorithms and over 35 years of CPU time;
in general, computing the diameters of Cayley graphs is computationally
difficult.

In this paper we consider symmetric groups as generated by minimal sets of
transpositions. A transposition graph is a graph G on n labeled vertices that
corresponds to a set S of transpositions in Sn, where (i, j) ∈ S if and only
if vertices i and j are adjacent in G. A transposition tree is a transposition
graph that is a tree, which happens if and only if S is a minimal generating
set.

The diameters of symmetric groups as generated by transpositions were stud-
ied by Akers and Krishnamurthy in a much-cited paper [8]; their paper in-
cludes specific results for a few types of transposition trees. However, their
only general bound is the following.

Theorem 1 (Akers & Krishnamurthy).

diam Γ ≤ max
π∈Sn

{
c(π)− n+

n∑
i=1

distT (i, π(i))

}
. (1)

Unfortunately, this bound is computationally intractable, as it requires iter-
ating over each permutation in Sn.

Ganesan [1] gave an algorithm β for computing bounds on the diameter of
Sn as generated by transposition trees which looks only at the tree, rather
than examining each individual permutation in Sn. This is a significant im-
provement over the previous algorithms – instead of computing a quantity for
every element of Sn, as näıve approaches and Akers and Krishnamurthy’s do,
he gives a simple algorithm. However, Ganesan’s algorithm is still somewhat
slow, and the bound can be improved significantly.

2

We provide three new algorithms, α, ζ, and η. Our first algorithm, α, is
harder to compute than β, but produces a better bound; its bound is always
at least as good as β, can be quadratically better on certain trees, and does
somewhat better empirically. On the other hand, η is computationally very
fast – it can be computed easily even for trees on hundreds of nodes, and in
practice it does only a little worse than β.

In Section 2 we discuss the previous work by Ganesan, in addition to some
new properties of his algorithm. In Sections 3, 4, and 5, we discuss our new
algorithms, α, η, and ζ, respectively. Section 6 compares our algorithms to
each other and to previous algorithms. Section 7 discusses open questions
for further research. Appendix Appendix A gives examples of how each
algorithm works on specific families of transposition trees.

2. Previous work: Algorithm β

2.1. Transposition trees

To define Ganesan’s algorithm, we must first explain the framework for un-
derstanding transposition trees. We can think of a permutation in Sn as
acting on a set of moveable markers on the vertices of the transposition tree.
We place a marker π(i) at each vertex i of T . Then swapping the markers
at vertices i and j corresponds to multiplying π by (i, j) (on the right if we
multiply permutations right-to-left). Then expressing a permutation as a
product of the generators in the transposition tree corresponds to giving a
sequences of edges in the transposition tree, such that sequentially swapping
the markers along each edge moves each marker to its corresponding vertex.
We call moving a set of markers to their corresponding vertices homing those
markers.

For example, consider S4 = 〈(1, 2), (1, 3), (1, 4)〉; we can represent it by the
transposition tree shown in the first part of Figure 1. Suppose we want
to show the permutation (1, 2, 3) on this tree. We put marker 2 on vertex
1, marker 3 on vertex 2, marker 1 on vertex 3, and marker 4 on vertex 4,
as shown in the second part of Figure 1. Now, if we swap the markers on
vertices 1 and 2, we get the permutation (1, 2, 3)(1, 2) = (1, 3), as shown.
Subsequently swapping the markers on vertices 1 and 3 would give us the

3

1
2

3

4

2
3

1

4

3
2

1

4

Figure 1: Transposition trees for S4 as generated by (1, 2), (1, 3), and (1, 4). On the left,
the original transposition tree, with the labelled nodes. In the center, the markers are in
the permutation (1, 2, 3). On the right, we have swapped the markers on vertices i and j,
giving the permutation (1, 2, 3)(1, 2) = (1, 3).

4

permutation (1, 2, 3)(1, 2)(1, 3) = (1), so we have moved each marker to its
corresponding vertex, or, equivalently, written (1, 2, 3) = (1, 3)(1, 2) as a
product of the given set of generators.

2.2. Algorithm β

We next define Ganesan’s algorithm β. Algorithm β iterates over the trans-
position tree, removing two vertices at each step, and recursively computing
a bound for the diameter of the Cayley graph Γ of the group G.

Although Ganesan defines β in a non-recursive fashion, we find it easier to
define it recursively. We begin with notation. Let T be a tree on n vertices
with diameter d. Denote by V (T) the set of vertices of T , and let L(T) be the
set of leaves of T ; if I ⊂ V (T), let T − I be the induced subgraph obtained
by removing the vertices in I from T .

Algorithm 1. Nondeterministically let β(T) be any of the values

2d− 1 + β(T − {i, j})

where i, j ∈ L(T) and distT (i, j) = d. If T has order 0 or 1, let β(T) = 0.
Then let βmax(T) be the maximum possible value produced. (Note that while β
is not deterministic, the maximum value it produces is a well-defined quantity,
which we can compute recursively by taking a maximum over i and j.)

Theorem 2 (Ganesan [1]). diam Γ ≤ βmax.

We omit the details of Ganesan’s proof, but the idea is that there is always a
pair of maximally separated vertices whose markers can be homed in 2d− 1
moves.

Algorithm β has many advantages over previous methods, such as the for-
mula (1) of Akers and Krishnamurthy. Their formula requires iterating over
every possible permutation in Sn to compute a bound; β involves only the
properties of the transposition tree. However, while algorithm βmax is a sig-
nificant improvement over the previous methods, it has two main defects.
First, it is computationally slow, since one must compute all possible values
of βand only the maximal one is a bound. Second, the bound it produces is
often significantly larger than the actual diameter.

5

1

2

3

4

5

6
7

8
9

Figure 2: The transposition tree T .

We now discuss some properties of Ganesan’s β, and why simply computing
an arbitrary β does not necessarily produce a bound.

2.3. Non-maximal β

Ganesan conjectures that βmin is also an upper bound on diam Γ. While
we are unable to find a counterexample to this claim (primarily because, in
general, β is relatively far off the exact diameter, and computing the diameter
of large transposition trees exactly is quite hard), there is reason to suspect
that, at the least, such a proof cannot proceed recursively.

In particular, consider the transposition tree T on 9 vertices from Ganesan [1],
shown in Figure 2, and suppose we start with the permutation (3, 7)(5, 9). If
we are to prove βmin is an upper bound for diam Γ recursively, we must show
that we can home any two maximally separated markers in 2 diamT − 1 = 7
moves. However, we will show that homing 7 and 9 in the above permutation
requires 8 moves.

In particular, to home both markers, we must use each of the swaps (2, 3),
(2, 5), (1, 2), (1, 6), (6, 7), (1, 8), and (8, 9) at least once, since each is on
either all paths from 3 to 7 or all paths from 5 to 9. Then to home both
markers in 7 moves, we must use each swap exactly once. However, after the
swap (1, 2), we can end up with only one of 7 and 9 on the right side of that
edge; thus the other must require another use of (1, 2), so we cannot home
both in 7 moves.

6

2.4. Non-unique values of β

Ganesan asks whether algorithm β produces a unique value on almost all
trees as n → ∞. This problem remains open, but as a partial result, we
exhibit a large infinite family of trees on which it always takes on multiple
values, and give computational results for all trees on at most 17 vertices
that suggest that unique β values become less common for large n, and that
there exist trees with arbitrarily many values of β.

Proposition 1. For any tree T on n vertices with multiple values of β,
and any rooted tree R on m vertices, there is a tree T ′ on n + 2m vertices,
depending on R, which also has multiple values of β; each R produces a
distinct T ′.

Proof. Consider any tree T on n vertices with multiple values of β (for ex-
ample, the tree shown in Figure 2, for which β can produce 20 or 22), and
let i and j be two maximally-separated vertices. Then for any rooted tree
R on m vertices, attach a copy of R to each of i and j, such that i and j
are the roots of the trees, resulting in a new tree T ′ on n + 2m vertices. To
compute β, we may always pick a vertex maximally distant from the root
of R, and remove both of the corresponding vertices in T ′. Eventually, we
will get back to T , at which point we continue as if computing the value of β
for T , which must result in multiple possible values. Then β(T ′) must take
on at least that many possible values as well. Note that each R produces a
distinct T ′ as desired.

Otter [9] showed that the number of unrooted trees grows as Cann−5/2, and
the number of rooted trees grows as Dann−3/2 as n → ∞, where C ≈
0.5349 . . ., D ≈ 0.4399 . . ., and a ≈ 2.9956 Then the number of such
examples with n vertices grows at least as the number of rooted trees on
bn−9

2
c vertices, i.e., as Θ(an/2n−3/2). This grows more slowly than the num-

ber of unrooted trees, but still shows that many trees have multiple β values.

Proposition 2. There exist trees with arbitrarily many values of β.

Proof. Consider the tree Tn shown in Figure 3. We will show by induction
that it has at least n values of β, namely

{10+4j | 0 ≤ j ≤ n−2}∪{14n−6} = {10n, 10n+4, . . . , 14n−12, 14n−8, 14n−6}.

7

1

2
3

4

5 6
· · ·

2n+ 3 2n+ 4
· · ·

3n+ 2 2n+ 4
· · ·

3n+ 2

2n− 1 leaves n− 1 leaves n− 1 leaves

Figure 3: Tn, with n values of β.

First, Ganesan shows, and the computation is simple to check, that when
n = 2, the tree T2 = T is the one shown in Figure 2, which has two values of
β, 20 and 22.

Now consider some Tn, and suppose that Tn−1 has the desired n values of β.
Then we can remove from Tn the pairs of vertices {5, 2n+4} and {6, 3n+3},
leaving a tree isomorphic to Tn−1, and giving us the values of β of 7 + 7 +
β(Tn−1) which can take on any of the values in {10n+ 4, 10n+ 8, . . . , 14n−
12, 14n− 8, 14n− 6}. Finally, if we remove the pairs {2n+ 4, 3n+ 3}, {2n+
5, 3n + 4}, . . . , {3n + 2, 4n + 1}, and then {4, 5} and {3, 6}, we get a star
graph on 2n+1 vertices, so β(Tn) = 7(n−1)+5+5+β(S2n−1) = 10n. Then
Tn has all the claimed values of β, so by induction we are done.

Table 1 gives the number of trees with non-unique β on at most 17 vertices.

3. Algorithm α

3.1. Motivation

In this section we define an algorithm α for computing bounds on the di-
ameter of Sn as generated by transposition trees. Algorithms α and βmax

have the same computational complexity, although in practice, α is slower
than βmax. However, α obtains a much tighter bound in certain cases, and
a somewhat better bound in many cases; in all cases its bound is at least as

8

n
Unrooted Trees with multiple values of β Fraction with

trees 2 values 3 values 4 values multiple values
1 1 0.0%
2 1 0.0%
3 1 0.0%
4 2 0.0%
5 3 0.0%
6 6 0.0%
7 11 0.0%
8 23 0.0%
9 47 1 2.1%
10 106 1 0.9%
11 235 9 3.8%
12 551 9 1.6%
13 1301 79 2 6.2%
14 3159 83 2 2.7%
15 7741 606 26 8.2%
16 19320 673 24 3.6%
17 48629 4676 298 6 10.2%

Table 1: Trees with multiple values of β.

9

good as that of βmax. Details of the performance of each algorithm are given
in Section 6.

Because computing exact diameters of groups is hard, it is difficult to tell
exactly how much α differs from the actual diameter. However, we suspect
that the bound given by α is as close as possible to the actual diameter
as we can get without considering individual permutations or working non-
recursively.

3.2. Definition

To define the algorithm α recursively; we first introduce some notation.
Again, let T be a tree on n vertices with diameter d, let V (T) be the set
of vertices of T , and let L(T) be the set of leaves of T . If I ⊂ V (T), let T − I
be the induced subgraph obtained by removing the vertices in I from T . In
addition, let C(T) ⊂ V (T) be the center of T . (The center of a tree T is the
set of vertices v such that max{distT (u, v) | u ∈ V (T)} is minimal.) Then
|C(T)| must be 1 or 2. If |C(T)| = 1 then we also use C(T) to refer to the
unique central vertex of T .

Furthermore, we define a set of rooted trees, the central subtrees of T , as
follows. If C(T) = {a, b}, then define the central subtrees to be the connected
components of T with the edge (a, b) removed, and with roots a and b.
If C(T) = a, then define the central subtrees of T to be the connected
components of T − {a}, with the vertices adjacent to a as the roots. Each
subtree has depth at most bd−1

2
c, and so we say subtrees with that depth

have maximum depth.

Algorithm 2. Let α(T) = αmin(T) be the minimum of the following values.

(a) If T has at most 2 central subtrees with maximum depth, then

2d−1+min{α(T−{i, j}) | i, j leaves of distinct central subtrees of T}.

(If not, skip this case.)
(b) d+ min{α(T − {i}) | i ∈ L(T)}.

(c) 2d − 1 + min
i∈L(T)

 max
j∈L(T)

distT (i,j)=d

(
α(T − {i, j})

). (If the maximum is empty

for some i, we skip that i.)

10

Finally, let α(T) be 0 if T has 0 or 1 vertices.

Theorem 3. diam Γ ≤ α(T) ≤ βmax(T).

Proof. We prove the first inequality by induction on n. In the base case, T
has 0 or 1 vertices, and diam Γ = α(T) = β(T) = 0. Then suppose we have
some tree T with n vertices, and that diam Γ ≤ α(T) for all trees on fewer
than n vertices. Consider some permutation π of the markers on its vertices,
where the marker i begins on vertex π−1(i).

First, suppose α takes branch (a) of the minimum, removing i and j. If
distT (π−1(i), i) < d, we can move i’s marker home in at most d−1 moves, then
j’s home in at most d moves, so we can home any i and j, and thus remove
them from T , in 2d− 1 moves, as desired. Similarly, if distT (π−1(j), j) < d,
we can do the same. If not, then distT (π−1(i), i) = distT (π−1(j), j) = d, so
i and π−1(i) must be in distinct maximum depth central subtrees of T , as
must j and π−1(j). But i and j are also in distinct central subtrees, so i
and π−1(j) must be in the same subtree, as must j and π−1(i). So in bd−1

2
c

moves each, we can move markers i and j to the roots of their respective
trees. Then, in 1 move if the diameter is odd, and 3 if it is even, we can swap
i and j, since they lie at the ends of a path of length 1 or 2. Then we can
move them each another bd−1

2
c moves to get home. In either case, this takes

2d − 1 moves. Then we can home the rest of the markers in α(T − {i, j})
moves, so we are done.

Now suppose α takes branch (b), removing i. Then we can move i’s marker
home in d moves, since distT (π−1(i), i) ≤ diamT = d. Again, we can home
the remaining markers in α(T − {i}) moves.

Finally, if α takes branch (c), we use a method similar to Ganesan’s [1].
Suppose α attains the minimum with some vertex i. If distT (i, π−1(i)) < d,
we home marker i in at most d − 1 steps, then home marker j in at most
d steps, for any j maximally separated from i. This takes at most 2d − 1
steps. Otherwise, distT (i, π−1(i)) = d. In this case, we first home marker
j = π−1(i) in at most d steps. The last of these must exchange marker
i (sitting at π−1(i)) so that it is now on the (unique) vertex adjacent to
π−1(i). Then it takes at most d− 1 more steps to move back to i, for a total
of 2d − 1 steps. Then for any i and some j, we can home i and j in 2d − 1
steps and home everything else in α(T − {i, j}) moves, as desired.

11

Since we have proven that each step of α produces an upper bound, we are
done, and diam Γ ≤ α(T).

For the second inequality, observe that the third step of α is a slightly stronger
version of Ganesan’s β, and α always takes the step which will produce the
minimal possible value, α(T) is necessarily less than or equal to β(T); in the
worst case, α just does exactly what β does. Then α(T) ≤ βmax(T).

4. Algorithm η

4.1. Motivation

Algorithm η incorporates a new step which removes several leaves at once,
to compute a bound very quickly. It gives an acceptable bound, and does so
very quickly, without backtracking on different orders of removing vertices;
thus, it can be used even on very large trees.

4.2. Definition

Let S(T) be the set of vertices maximally distant from the center. (If
|C(T)| = 2, measure the distance to the nearer center.) Again, let η(T) = 0
if T has 0 or 1 vertices, and define η recursively as follows:

(a) If there exists a vertex i of T such that some other vertex j of T
is the unique vertex at maximum distance from i, then let η(T) =
d+ η(T − {j}).

(b) Otherwise, let η(T) = d|S(T)|−
⌈
|S(T)|

2

⌉
+η(T −S(T)) as in Algorithm

η.

Theorem 4. diam Γ ≤ η(T).

Proof. We proceed by induction on n; with 0 or 1 vertices, the theorem is
trivially satisfied. Suppose the markers are permuted by π, so that marker
i is sitting on π−1(i), and let |S(T)| = m. First, home all markers in S(T)

12

which are not currently sitting on vertices in S(T). Suppose k markers remain
unhomed after this is complete; each must be sitting on a vertex in S(T).
Since each of the first m − k markers was not on a vertex in S(T), it must
have taken at most d − 1 moves, so we have used at most (m − k)(d − 1)
moves so far. Now pick one remaining marker at a distance d from home,
and call it i; it may be moved home in at most d moves. Then as in branch
(c) of Algorithm α, we have already moved the marker that was on i once,
so it may be homed in at most d− 1 moves, and so on for all markers in the
same cycle as i. We then repeat by picking a new marker, and so on. This
takes k(d − 1) + c(π) moves, where c(π) is the number of cycles of π. But
c(π) ≤

⌊
k
2

⌋
, so in total, we have made at most

(m− k)(d− 1) + k(d− 1) +

⌊
k

2

⌋
= (d− 1)m+

⌊
k

2

⌋
moves. Then since k ≤ m, we have

(d− 1)m+

⌊
k

2

⌋
≤ (d− 1)m+

⌊m
2

⌋
= dm−

⌈m
2

⌉
,

so all markers corresponding to vertices in S(T) can be homed in dm−
⌈
m
2

⌉
moves. The remaining vertices can be homed in η(T − S(T)) moves by
induction, so all markers can be homed in η(T) moves.

If instead we used step (b), we proceed as in the proof of Algorithm α. We
can home any single marker in d moves, and then home the rest in η(T −{i})
moves, so by induction we are done, and η is a bound for diam Γ.

5. Algorithm ζ

5.1. Motivation

Algorithm ζ represents a simple “näıve approach” against which the speed
and bounds of other algorithms can be compared. Since some of the steps of
Algorithm α take a minimum, instead of a maximum, each individual value
computed by those steps, before taking a minimum, is also an upper bound
for diam Γ. Thus, if we do not require as good a bound, we may simply
arbitrarily pick vertices to remove, and obtain a weaker bound much more
quickly.

13

5.2. Definition

As with α, we define ζ recursively. Again let L(T) be the leaves of T .

Algorithm 3. Let ζ(T) be any of the values d + ζ(T − {i}), where i ∈
L(T). Again, ζ(T) is zero if T has order zero or one. As with β, ζ is
nondeterministic, but we can compute an arbitrary value of ζ by choosing a
leaf randomly, or compute the minimum or maximum value of ζ by taking a
minimum or maximum over i at each step.

Theorem 5. diam Γ ≤ ζmin(T).

Proof. We prove this exactly as we proved branch (b) of Algorithm α. We
induct on n. Suppose that in computing some particular value of ζ(T), we
remove vertex i. Then we can move marker i home to vertex i in d steps. We
then recurse, and see that we can home all remaining markers in ζ(T − {i})
steps, and ζ(T) is an upper bound for diam Γ. Then any ζ(T), and thus
ζmin(T) is an upper bound for diam Γ.

6. Relative performance

6.1. Tightness of bound

In general, computing the exact diameters of Cayley graphs is computation-
ally very hard. Thus, we do not know the absolute error of any of the bounds
in general; they are certainly not always exact. However, we can compare
the bounds computed by the different algorithms to each other.

In Table 2, we show the average bounds computed by each algorithm. For
each n tested, 100 random (labelled) trees were generated, then each algo-
rithm was run on each, and the results averaged. Algorithms too slow to
run were omitted. “Any” means that a value of β or ζ was chosen arbitrar-
ily; note that the values computed for “Any β” are not known to be upper
bounds on diam Γ.

Now, we move on to general relations between the algorithm. First, we prove
that α always produces the best bound of the algorithms discussed.

14

Proposition 3. α(T) ≤ βmax(T), ζ(T), η(T), that is, α produces a better
bound than βmax, ζ, or η.

Proof. We induct on n. Clearly when n is 0 or 1 we are done, since each
bound is zero. Now suppose that α(T ′) ≤ βmax(T

′), ζ(T ′), η(T ′) for trees T ′

with fewer than n vertices. Then let T have n vertices, and observe:

• α(T − {i, j}) ≤ βmax(T − {i, j}) for all i and j, so option (c) of α is
always at most βmax(T), so α(T) ≤ βmax(T).

• Similarly, α(T −{i}) ≤ ζ(T −{i}) for all i, so option (b) of α is always
at most ζ(T), so α(T) ≤ ζ(T).

• Finally, any vertex removed by option (c) of α is in S(T), so an appli-
cation of option (b) of η is equivalent to several applications of option
(c) of α. And again, option (a) of η is equivalent to option (b) of α.
Then by the same inductive method, α(T −S(T)) ≤ η(T −S(T)), and
α(T − {i}) ≤ η(T − {i}), so α(T) ≤ η(T).

Then by induction the proposition holds for all n.

However, ζmin cannot do much worse than α(T).

Proposition 4. α(T) ≤ ζmin(T) ≤ α(T) + n
2
.

Proof. We have already shown the first half of the inequality (in Propo-
sition 3). We induct on n to show the second half. If n is 0 or 1, α(T) =
ζmin(T) = 0, so we are done. Finally, we always have that α(T) = 2d+α(T −
{i, j}) or α(T) = 2d−1+α(T−{i, j}) for some i and j, and similarly for ζmin,
so α(T)−ζmin(T) can differ by at most 1 from α(T −{i, j})−ζmin(T −{i, j})
for some i and j. Now ζmin(T − {i, j}) ≤ α(T − {i, j}) + n−2

2
by induction,

so ζmin(T) ≤ α(T) + n
2
.

Finally, we note that the three bounds can be quite far apart in some cases.

Proposition 5. There exist transposition trees T for which α(T), ζmin(T) ≤
βmin(T), βmax(T) ≤ ζmax(T) by Ω(n2) in each case.

15

n α βmax Any β ζmin Any ζ η
10 26.11 27.48 27.48 27.51 34.67 28.25
15 50.68 53.6 53.6 52.65 71.6 55.06
20 77.83 81.02 81.02 80.28 116.2 84.14
30 144.2 144.2 219.55 149.73
40 209.12 209.04 333.81 218.3
50 288.36 470.71 299.4
75 492.58 844.26 515.9
100 710.3 1257.45 741.7

Table 2: In this table we show the average strength of the bounds provided by each
algorithm; recall that arbitrary β are not known to give a bound.

Proof. For T = Bn,n, defined in Appendix Appendix A, the values each
algorithm produces are described there. The tree T has O(n) vertices, but
the given bounds differ by Ω(n2). (In this case, the value of β is unique.)

In addition, Algorithm η can also do Ω(n2) worse than α, on the graph Bm,m

with two extra leaves adjacent to vertex 2m (the “handle” of the broom); we
omit the computation of its values under the various algorithms. In practice,
it seems to do better than ζmax or β, though.

The minimum value produced by Algorithm ζ can do at most linearly worse
than α(T). In particular, whenever α takes branch (a) or (c) of its minimum,
ζ can remove the same vertices, adding at most 2d instead of 2d − 1. So
ζmin(T)− α(T) ≤ n

2
.

6.2. Computational complexity

Computing a single value produced by algorithms β, ζ, and η is fairly fast.
Each step of the algorithm takes polynomial time in the number of vertices,
and the recursion takes at most n steps, so each is polynomial. However,
computing all values of β (in order to obtain βmax, which is known to be a
bound) or ζ requires recursing on all possible orders of removing vertices.
This can take superexponential (namely Ω(n!n2)) time in the worst case,
although in practice it is generally computable in a reasonable amount of

16

n α βmax Any β ζmin Any ζ η
10 0.204 0.008 0.004 0.065 0.008 0.004
15 4.589 0.036 0.012 1.168 0.024 0.012
20 66.807 0.135 0.023 14.293 0.045 0.017
30 1.369 0.068 0.129 0.035
40 11.912 0.162 0.306 0.069
50 0.209 0.413 0.082
75 0.784 1.500 0.237
100 1.747 3.447 0.418
500 14.013

Table 3: Running times (in seconds) for each algorithm on trees of different sizes; recall
that arbitrary values of β are not known to be bounds on diam Γ at all.

time. Similarly, Algorithm α can take superexponential time; in practice it
is worse than β but still tractable for small trees. Thus, for computationally
easy bounds, η is the best choice, but each of the algorithms is tractable for
small trees.

Table 3 gives a practical idea of the time taken by each algorithm. For each n
tested, 100 random (labelled) trees were generated, then each algorithm was
timed on each independently, and the results averaged. (All computations
were performed in Mathematica.) If the algorithm was too slow to run, its
result is omitted. “Any” means that a value of β or ζ was chosen arbitrarily;
note that the values computed for “Any β” are not known to be upper bounds
on diam Γ.

7. Conclusion

In summary, we found algorithms that compute upper bounds for the diam-
eter of groups generated by transposition trees. Algorithm α is somewhat
more difficult to compute than the previously known algorithm β, but pro-
duces stronger bounds in most cases, while algorithm η produces weaker
bounds than β, but does so much more quickly.

Of course, even Algorithm α rarely returns the exact diameter of the group.

17

It appears that it may be difficult to go further without iterating over specific
permutations, but it could be productive, for example, to look at how to do
so efficiently, and thus produce a better bound which is still computationally
easier than constructing the entire Cayley graph to compute the diameter.
Alternately, it would be useful to have heuristics for use with Algorithm α –
it might be possible to compute a bound which is marginally worse in most
cases, and much easier to compute, by making an educated guess rather than
recursing over every possible subtree. In addition, the properties of any of
the algorithms could be interesting to explore. How often do α and η use each
of their respective options? On which trees does each algorithm do worst?
Finally, it may be possible to extend these results to transposition graphs
which are not trees, or even to generating sets with elements of order greater
than 2, and ideally even to find bounds on the diameter of any Cayley graph
of Sn.

8. Acknowledgments

This research was done at the University of Minnesota Duluth REU, funded
by NSF/DMS grant 1062709 and NSA grant H98230-11-1-0224. It would
have been impossible without Joe Gallian, the director of the REU, and
Adam Hesterberg, Davie Rolnick, and Eric Riedl, the program advisers. I
would also like to thank Mike Develin and Gaku Liu for reading drafts of the
paper, and David Moulton for suggesting some of the example graphs.

Appendix A. Examples of algorithms

Appendix A.1. Summary of examples

Pn

α =
(
n
2

)
β =

(
n
2

)
ζ =

(
n
2

)
η =

(
n
2

)
Sn,k (n even)
α = n

2
k(2k + 1) η = n

2
k(2k + 1)

Sn,k (n odd)
α = n

2
k(2k + 1)− k

2
η = n

2
k(2k + 1)− k

2

Bn,k (n ≥ k ≥ 2)

18

α =
(
n+1
2

)
+ b3

2
(k − 1)c β = n2 −

(
n−k+2

2

)
ζ ∈ {

(
n+1
2

)
+ 2(k − 1), . . . ,

(
n+1
2

)
+ n(k − 1)}

Bn,k (k ≥ n ≥ 2)
α =

(
n+1
2

)
+ b3

2
(k − 1)c β = n2 − 1 + d3

2
(k − n+ 1)e

ζ ∈ {
(
n+1
2

)
+ 2(k − 1), . . . ,

(
n+1
2

)
+ n(k − 1)}

Appendix A.2. Path graph Pn

1 2 3
· · ·

n− 1 n

Figure A.4: The path graph on n vertices, Pn.

The diameter of the group generated by a path graph (shown in Figure A.4)
is well-known to be

(
n
2

)
. α(Pn) = β(Pn) = ζ(Pn) = η(Pn) =

(
n
2

)
as well; on

this simple graph all of the algorithms do well. We can see this by induction:
when n is 0 or 1, each algorithm returns 0 =

(
0
2

)
=
(
1
2

)
, and then for some

arbitrary n, we have, since removing either end of the path yields the same
graph,

α(Pn) = min (2n− 1 + α(Pn−2), n+ α(Pn−1), 2n− 1 + α(Pn−2))

= min

(
2n− 1 +

(
n− 2

2

)
, n+

(
n− 1

2

)
, 2n− 1 +

(
n− 2

2

))
α(Pn) =

(
n

2

)
.

Similarly, we have

β(Pn) = 2n− 1 + β(Pn−2) = 2n− 1 +

(
n− 2

2

)
=

(
n

2

)
ζ(Pn) = n+ ζ(Pn−1) = n+

(
n− 1

2

)
=

(
n

2

)
η(Pn) = n+ η(Pn−1) = n+

(
n− 1

2

)
=

(
n

2

)
where η follows option (a).

19

1

23

4

5 m

m+ 1

m+ 2m+ 3

m+ 4

m+ 5 2n

2n+ 1

2n+ 22n+ 3

2n+ 4

2n+ 5 3n

· · ·· · ·
kn+ 1

k

Figure A.5: The generalized star graph Sm,k.

Appendix A.3. Generalized star graph Sm,k

In the generalized star graph shown in Figure A.5, the diameter of the trans-
position tree is 2k.

Proposition 6. If m is even, α(Sm,k) = η(Sm,k) = m
2
k(2k + 1), and if m is

odd, α(Sm,k) = η(Sm,k) = m
2
k(2k + 1)− k

2
.

Proof. The value of α can be computed by induction, but it is ugly and not
particularly instructive to do so, so we omit the proof. In fact, by induction
on k we can see that η returns the same result. Clearly the results hold when
k = 0. If m is even, all leaves are in the set S(Sm,k) defined in Section 4, so

η(Sm,k) = 2kn−m
2

+η(Sm,k−1) = 2kn−m
2

+
m

2
(k−1)(2k−1) =

m

2
k(2k+1)

as desired, and similarly in the odd case. This is, in some sense, the best-case
graph for η – it does just as well as the other algorithms, and is extremely
easy to compute. (We omit the computation of ζ and β as both are long but
uninteresting.)

20

1
2

3 · · ·

k

k + 1

k + 2k + 3
· · ·

k +m

Figure A.6: The broom graph Bm,k

Appendix A.4. Broom graph Bm,k

We define the broom graph on m vertices as shown in Figure A.6. It is an
intermediate case between common trees, and thus some of the algorithms
do poorly on it.

First, consider m = 1, i.e., a star graph on k + 1 vertices. Here βmax =
diam Γ = b3

2
kc, so since diam Γ ≤ α(T) ≤ βmax(T), α = b3

2
kc too.

Otherwise, m ≥ 2 and we have the following proposition.

Proposition 7. If m ≥ 2, then α(Bm,k) =
(
m+1
2

)
+ b3

2
(k − 1)c.

Proof. We prove this by induction on m+ k.

For the base case, let m = 2, and we have a star graph on k + 2 vertices.
Then α(B2,k) = b3

2
(k + 1)c = b3

2
(k − 1)c+ 3 as desired, since B2,k = B1,k+1.

Furthermore, if k = 1, we have a path graph Bm,1 = Pm+1 which has
α(Pm+1) =

(
m+1
2

)
as desired.

Now, for the inductive step, let m > 2, k > 1, and suppose we have already
shown the claim for all smaller values of m+ k. Then

α(Bm,k) = min(2n− 1 + α(Bm−1,k−1),m+ α(Bm−1,k),m+ α(Bm,k−1), 2n− 1 + α(Bm−1,k−1))

= min

(
2n− 1 +

(
m

2

)
+

⌊
3

2
(k − 2)

⌋
,

m+

(
m

2

)
+

⌊
3

2
(k − 1)

⌋
,m+

(
m+ 1

2

)
+

⌊
3

2
(k − 2)

⌋)

21

= m+

(
m

2

)
+

⌊
3

2
(k − 1)

⌋
(for m > 2)

=

(
m+ 1

2

)
+

⌊
3

2
(k − 1)

⌋
as desired.

It is easy to compute β and ζ by a similar method; we omit the computation
but state the results.

Proposition 8. If m ≥ 2, the value of β(Bm,k) is uniquely m2 −
(
m−k+1

2

)
when m ≥ k and m2 − 1 + b3

2
(k −m+ 1)c when m ≤ k.

On the other hand, ζ(Bm,k) can take on any integral value from
(
m+1
2

)
+2(k−

1) to
(
m+1
2

)
+m(k − 1), for k ≥ 2.

[1] A. Ganesan, Diameter of Cayley graphs of permutation groups generated
by transposition trees, ArXiv e-printsarXiv:1111.3114.

[2] L. Babai, G. L. Hetyei, On the diameter of random cayley graphs of
the symmetric group, Combinatorics, Probability and Computing 1 (03)
(1992) 201–208. doi:10.1017/S0963548300000237.

[3] L. Babai, A. Seress, On the diameter of cayley graphs of the symmetric
group, J. Comb. Theory Ser. A 49 (1) (1988) 175–179. doi:10.1016/

0097-3165(88)90033-7.

[4] L. Babai, A. Seress, On the diameter of permutation groups, Euro-
pean Journal of Combinatorics 13 (4) (1992) 231 – 243. doi:10.1016/

S0195-6698(05)80029-0.

[5] H. A. Helfgott, A. Seress, On the diameter of permutation groups, ArXiv
e-printsarXiv:1109.3550.

[6] J. Bamberg, N. Gill, T. Hayes, H. Helfgott, Á. Seress, P. Spiga, Bounds
on the diameter of Cayley graphs of the symmetric group, ArXiv e-
printsarXiv:1205.1596.

22

http://arxiv.org/abs/1111.3114
http://dx.doi.org/10.1017/S0963548300000237
http://dx.doi.org/10.1016/0097-3165(88)90033-7
http://dx.doi.org/10.1016/0097-3165(88)90033-7
http://dx.doi.org/10.1016/S0195-6698(05)80029-0
http://dx.doi.org/10.1016/S0195-6698(05)80029-0
http://arxiv.org/abs/1109.3550
http://arxiv.org/abs/1205.1596

[7] T. Rokicki, H. Kociemba, M. Davidson, J. Dethridge, God’s number is
20 (2010).
URL http://www.cube20.org/

[8] S. B. Akers, B. Krishnamurthy, A group-theoretic model for symmet-
ric interconnection networks, Computers, IEEE Transactions on 38 (4)
(1989) 555–566. doi:10.1109/12.21148.

[9] R. Otter, The number of trees, The Annals of Mathematics 49 (3) (1948)
pp. 583–599.
URL http://www.jstor.org/stable/1969046

23

http://www.cube20.org/
http://www.cube20.org/
http://www.cube20.org/
http://dx.doi.org/10.1109/12.21148
http://www.jstor.org/stable/1969046
http://www.jstor.org/stable/1969046

	Introduction
	Previous work: Algorithm
	Transposition trees
	Algorithm
	Non-maximal
	Non-unique values of

	Algorithm
	Motivation
	Definition

	Algorithm
	Motivation
	Definition

	Algorithm
	Motivation
	Definition

	Relative performance
	Tightness of bound
	Computational complexity

	Conclusion
	Acknowledgments
	Examples of algorithms
	Summary of examples
	Path graph Pn
	Generalized star graph Sm,k
	Broom graph Bm,k

