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Cohomology Operations

Let Hn(X ;R) be the nth degree cohomology of
the space X with coefficients in the ring R.

I A cohomology operation is a natural
transformation of cohomology functors, that is,
for m and n and rings R and S, a map
Θ:Hn(X ;R)→ Hm(X ;S) for each X , such
that the diagram below commutes for each
f :X → Y .

Hm(Y ;R) Hn(Y ;S)

Hm(X ;R) Hn(X ;S)

Θ

f∗ f∗

Θ

I A stable cohomology operation of degree
i is a sequence of cohomology operations
Θ:Hn(X ;R)→ Hn+i(X ;S) for each n which
commute with the suspension isomorphism Σ:

Hn(X ;R) Hn+i(X ;S)

Hn(ΣX ;R) Hn+i(ΣX ;S)

Θ

Σ Σ

Θ

The Steenrod Algebra
The Steenrod Algebra A is the algebra of
stable cohomology operations from Z/2
cohomology to itself. It is generated by operations
Sqi of degree i such that:

I Sq0 is the identity

I Sqn(x) = x2 if x ∈ Hn(X ;Z/2)

I Sqn(x) = 0 if x ∈ Hm(X ;Z/2), m < n

I Sqn(xy) =
∑
i+j=k

Sqi(x)Sqj(y).

The entire algebra consists of the Sqi and their
compositions, which satisfy the Adem relations:

SqiSqj =

bi/2c∑
k=0

(
j − k − 1

i− 2k

)
Sqi+j−kSqk.

Using the Adem relations, we can write any
element in terms of the Sq2i. We let A(r) be the

subalgebra generated by the Sq2i for i ≤ r.

Bases of the Steenrod Algebra
Adem (Admissible)

Using the Adem relations, any product SqiSqj

may be rewritten if i < 2j. Then the Adem
basis consists of Sqi1 · · · Sqik, ij ≥ 2ij+1. We
may define L(k) to be the quotient of the
Steenrod Algebra by the ideal generated by all
Adem basis elements of length greater than k.

Milnor (Dual)

Milnor found that the Steenrod Algebra is a Hopf
algebra, with a commutative comultiplication.
Thus the dual Steenrod Algebra is commutative,
and in fact is a polynomial algebra over elements
ξn. The duals of the monomials ξi11 ξ

i2
2 · · · ,

denoted Sq(i1, i2, . . .), form the Milnor basis.

P s
t

Let P s
t = Sq(0, 0, . . . , 0, 2s), where the 2s is in the

tth position. Pick any ordering on the pairs (s, t);
products of P s

t in that order constitute a basis.
The P s

t derives some convenient properties from
the dual basis, while also giving some flexibility
in the choice of ordering, allowing it to describe
ideals nicely.

Wood Z

The element P s
t has degree 2s(2t − 1). If we

replace it by Sq2s(2t−1), and use the reverse left
lexicographic ordering on (s + t, s), we get an
analogue of the P s

t basis which is monomial in the
Sqi; it describes certain ideals nicely like the P s

t

bases, but is closer to the Adem basis. It consists
of subproducts of · · · Sq4Sq6Sq7Sq2Sq3Sq1.

Structure of the Subalgebras
Welcher showed that L(k) is a
free A(k − 1)-module, so it is
natural to consider the structure
of L(k) as an A(r)-module for
any r. In particular, it appears
that L(k) is built up out of the
“quotient” algebras
A(r)//A(r − k) (see below).

A(r)//A(r − k)

Consider A(r) as an A(r− k)-
module; note that we may also
consider F2 to be an A(r− k)-
module, where the action of any
element except 1 is zero. Then
we may define A(r)//A(r −
k) to be the tensor algebra
A(r)⊗A(r−k) F2.

I Intuitively, A(r)//A(r − k)
is like A(r), but with any
element which can be written as
a product ending in Sq2i,
i ≤ r − k, equal to zero.

Small A(r)

Sq1

Sq0

Sq3

Sq2

Sq5Sq1

Sq4Sq1 + Sq5

Sq3Sq1

Sq2Sq1

Sq1

Sq0

A(0) is simple: it is spanned by Sq0 = 1 and
Sq1, with Sq1Sq1 = 0. It is shown as an A(0)-
module above right. Each point represents an
element of the (Adem) basis, and the thick
solid line represents the (left) action of Sq1 (in
this case, on 1). To represent an A(1) module,
we use a thinner curved line for the (left) action
of Sq2; A(1) is shown below right. So we know
Sq1Sq2 = Sq3 and Sq2Sq3 = Sq4Sq1 + Sq5.

Sq2

Sq1

Sq0

Sq15L(1)

Sq2

Sq0

Sq4Sq1 + Sq5

Sq3

On the far right is shown the small-degree
classes of L(1) as an A(1)-module; it contin-
ues periodically upwards. Looking only at the
thick lines, as an A(0)-module, it is indeed
free, with basis Sq2i. As an A(1)-module, it is
not free, but it is still built up out of copies of
A(1)//A(0) (shown near right), in the sense
that it has a filtration in which the filtration quotients are
isomorphic to A(1)//A(0), except for one containing only
the single class Sq0.

L(2)

Sq2

Sq1

Sq0

Sq3Sq1

Sq2Sq1

Sq4Sq2

Sq15

Sq8Sq4

Sq6Sq3

At right is shown
L(2) as a free module
over A(1), as Welcher
showed. We can
show that, indeed,
L(2) considered
as an A(2) module
has a filtration with
filtration quotients
in each dimension
isomorphic to
A(2)//A(0), with the

exception of a single class in every dimension, and
a finite number of extra classes.

The general case

In the general case, we have shown, essentially,
that the filtration exists, but not that it covers all
of L(k). In particular, we prove the commutation
identity that, if we let

Xn = Sq2n+1−2nSq2n+1−2n−1 · · · Sq2n+1−1,

then

XnXn−1Sq2n+1m = XnSq2n+1mXn−1.

This allows us to show that the top class
XrXr−1 · · ·Xr−k+1 of A(r)//A(r − k),
when multiplied by the basis elements
Sq2r+1m1Sq2rm2 · · · Sq2r−k+2mk for m1 ≥ m2 ≥
· · ·mr−k, produces a linearly independent set.
We hope to show that these filtrations in fact
cover all but some set of classes which has,
in the natural sense, lower dimensionality than
L(k); so far we have been able to show this
only in specific cases, by finding the actual set
of excluded classes in each case, but we hope to
soon complete the general result.
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